If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-2w^2+3w+9=0
a = -2; b = 3; c = +9;
Δ = b2-4ac
Δ = 32-4·(-2)·9
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-9}{2*-2}=\frac{-12}{-4} =+3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+9}{2*-2}=\frac{6}{-4} =-1+1/2 $
| 55=1x | | 8-(2z+7)=8-z | | Z=y-4 | | 3t+10=19 | | (7+x)^2+(7-x)^2=130 | | 0=-2/11-4x/11+x^/11 | | 5(1+2x)=4x+29 | | 5(x+4=15 | | 6y-1=-72 | | -2x+1=x | | k+29/(-5)=9 | | 24x-2x=30 | | 5(x+12=95 | | (x+2)*(x-3)=14 | | 7x+19=4x+13 | | Q.2x-0.2=5.6 | | 64/16x=24 | | 15x+6=7.5 | | 0.3x+x=1800 | | -3x+8-4x=-48 | | 4v^2-12v+5=0 | | 4(8-6x)=-16 | | 5(x+4)=16 | | 8•8/16x=24 | | 3-5x+4×=8 | | 12-1/5x=-7 | | -3(w+15)=-18 | | 2t-5t=-10 | | -4u+32=-2(u-7) | | 16.3k+19.2+7.5k=64 | | 4^x-2=18 | | 2(y-2)=21-3y |